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Abstract. The surface roughness of a growing crystal is studied by Monte Qrlo  simulation 
in a kinetic svt-vertex model. Although for equilibrium the mul ls  M in g o d  agreement 
with the exact solution, even a small disequilibrium breaks down lhe roughening transi- 
tion. For tempenlures k l o w  the equilibrium roughening temperaare TR and arbitrary 
lsrgc diseqiiilibriilm, as well as for temperatures a b w e  TR but small disequilibrium the 
surface is logarithmically rough, whereas. for kmperatures above TR and sufficienlly 
large disequilibrium, the surface roughness increases as a power-law of size. A crossover 
from logarithmic to power-law roughness, m u m  when the disequilibrium is increased at 
a fixed temperature above TR, or the temperature is increased for disequilibrium fixed 
and sufficiently large. 

The dynamics of a growing interface separating two phases has received considerable 
attention in recent years. A number of growth and deposition models have been 
proposed and studied (for reviews, see [l]). Much of this interest was motivated by 
the fact that growth models, apart from their potential practical importance, exhibit 
new features which are interesting from the point of View of non-equilibrium statistical 
physics on a fundamental level. 

The morphology of the surface can be characterized by roughness. A roughening 
transition between different phases was originally discovered in connection with non- 
equilibrium phenomena of crystal growth [Z]; theoretically, it was then extensively 
studied mainly in the case of equilibrium, which is now reasonably well understood 
[3, 41. However, its nature in systems which are far from equilibrium is still not 
sufficiently explored. 

An interesting feature of the growth models is non-trivial scaling behaviour. It has 
emerged from the numerical simulations of simple discrete models of crystal growth 
that the width of the surface w obeys a scaling law with increasing time f or system 
size N [5] 

w ( t ,  N) % N(f ( f /N" )  (1) 

where f(z) -+ wnstant as 2: -+ cc and f ( z )  - z(/' as z + 0. Thus the steady-state 
( 1  + 00) width diverges as N( with a roughness exponent C as the size N increases, 
and the approach to the steady-state is characterized by a dynamical exponent Z. 
In the case of a self-affine structure on a d'-dimensional substrate described hy 
the height variable h, the width w is given by the mean-square height difference 

t Present addres: ?he lnslilute of Physics, aechoslovak Academy of Sciences, Prague, Czechoslovakia. 
t Present address: Dipaiiimento di Fisica dell'Universit2, I6146 Genwa, Ilaly. 
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w2 = (p - 71"). Here ( ) means the statistid average and 2 = xi A i / N  is the 
spatial average; i labels substrate sites, and N = N d '  is the total number of sites. 

This opens a way to the possibility of classifying the growth models, by analogy 
with the critical phenomena, into universality classes. Most of the recent effort on 
growth models have focused on finding the values of the exponents { and Z ,  often in 
connection with the nonlinear Iangevin equation proposed by Kardar er a1 [6] (KPZ). 
These treatments have produced a number of interesting results (7-241, in particular 
in terms of scaling lam- [7, 8, 13-15] and of a possible kioetic roughening kinsition 
[16-241. Many questions, however, are still open. In particular the dimension d = 3 
(d' = 2) appears to be critical for models from the KPZ class, so that it is not clear 
what the roughening properties will be. 

In a recent paper [25] we have introduced a kinetic six-vertex model (model 11) 
as a generalization of the exactly solvable six-vertex model of equilibrium statistical 
mechanics [26] to a non-equilibrium situationt. van Beijeren's mapping onto the 
specially symmetric case of the six-vertex model, the so-called F model, allows an 
exact description of the roughening transition for a surface in thermal equilibrium 
[B]. Model I1 was introduced to extend a previously studied growth model (model 
I [29]) to treat a much richer variety of processes. Both models I and I1 bear some 
similarity with, but neither is equivalent to, the hypercube stacking model of Forrest 

pea 
performed. Model I1 contains two parameters: temperature T and disequilibrium 
(or driving force) Ap, which are used for a parametrization of probability rates for 
condensation and evaporation of atoms 
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ard Tang [lq over .which the iiioji aciiiiaie shT,iu;aiions U? tte 

where A E  is a change of the energy of the configuration for a given process and 
p = l / k , T  is the inverse temperature. Model I1 appears to be richer in physical 
cnntent than both model I and the hypercube stacking model. It was found convenient 
to introduce dimensionless variables TIT, and Afi = Ap/k ,T , ,  using the exactly 
known roughening temperature TR of the six-vertex model: kBTR = e /  In 2 (where 
c U "G,tG* c,,c,gy,, I", "CLLIII,3 aGG L&-'J. v,,,,I\c N U a I  a,." l a " L L L 1 y  I", -,nu u'."p"JCY 

a Metropolis-like approach we have used (2), which for Ap  -+ 0 reduces to the 
Glauber kinetics [30]. We have shown [2S] that this model can describe different 
regimes of crystal growth, i.e. both layer-by-layer and continuous growth, and we 
have calculated a qualitative curve separating these two modes. 

Here we present the results of a further extensive numerical simulation in which 
we have concentrated on the roughness of the growing surface in the kinetic six-vertex 
model. We were interested in possible roughening transitions and their relation 
to different modes of growth. In this work we restrict ourselves to the roughness 
exponent C for which two different behaviours can already be seen for relatively 
small systems. Measuring the dynamical exponent z is hampered by transient effects, 
the scaling region is short and very large systems are required to obtain good results. 

We used an algorithm employing real time averaging and a special procedure 
(described elsewhere [U]) for &eating the constraint on the height diffcrcnce between 

- :" .--.".. ^^n-m.\ =-- ,i-*":k "-a r9<1 TT"l:lm A.""* ""A =...:I., r -71 ..,kn nm..llnm,l 

t A very different application of the six-verlex model to growth problems (in 1+1 dimensions) has been 
presented very recently in an inkresling paper by Gwa and Spohn [27], which exploits more fully the 
properlies of the exact solution. 



Kinelic roughness in the BCSOS model 3123 

N 
> .. 

2 

1.5 

1 

.5 

T=l5T.  

T=14TB 

T=1.3TR 

T=l.2Tx 

T=l.lT. 

T=T. 

T=0.9TR 

T=O 8T. 

3 4 5 6 7 

Figure L The dependence of the mean-square height difference UI on the size 
equiliblium. 

N i n  

the nearest neighbours in the BCSOS model. Using this procedure we were able to 
perform the calculations for different values of the temperature and chemical potential 
up to the substrate size of 128x128. We calculated the mean-square height difference 
for the sizes 8 x 8, 16 x 16, 32 x 32, 64 x 64 and 128 x 128. The number of Monte 
Carlo steps increased with size and the majority of our calculations were done for 
3 x lo3  steps per site, which turned out to be sufficient for our averaging procedure. 
hrthermore, the average over at least five independent runs was taken. 

2 

.15 

F@m 2 Temperature dependence of coefficients K and K; full curve, e m c l  mlulion 
for K ( T ) ;  tliangles, K ( T )  obtained by fitting numerical data; stan, kinetic mefficient 
K circles, extrapolated kinetic mefficient K-. 

At first we checked the equilibrium situation and compared our numerical results 
with the exact solution [26] which is available in this case. The Monte Carlo method 
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has been used for the study of the thermal roughening transition in the SOS model 
[31] and also in the BCSOS model [32] for the equilibrium case. Our results for the 
BCSOS model (figure 1) are very similar to those of [32]. For the thermal roughening 
transition the relation 
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I<(T)ln N if T > TR 
constant i f T < T ,  

w2( N) = (3) 

holds. The exact solution of the six-vertex model, in the case of the F-model for 
T > TR gives [33] 

1 
T cos-l A 

I((  T )  = (4) 

where A = 1 - ;e2@‘. The quantity I<( T )  obtained by a linear fitting from our data 
is compared with the exact solution (4) in figure 2 the agreement is goodt. 

N 
% 

4 T=1.5Tn 

n T=1.4Tn 

0 T=1.3T. 

x T = l 2 T .  

0 T = l . l T .  

x T=TR 

A T=0.9TR 

+ T=08TR 

v T=0.7Tn 

Figure 3. Ihe Same as in figure 1 but for vely small disequilibrium 

After this check we investigated the influence of a very small disequilibrium on 
the roughening transition (this problem was investigated theoretically some time ago 
by Nozikres and Gallet [35] and very recently by Hwa ef al [24]). There is no sign 
of a transition in the behaviour of the mean-square height difference (figure 3). Our 
data suggest that even for very small disequilibrium the surface is always rough with 
roughness still logarithmically increasing with the system size, i.e. with the roughness 
exponent { = 0. This agrees with the recent calculations of Hwa ef a1 using the 
renormalization group [24]. The roughness, even for temperatures below TR, can be 
understood because the number of incomplete layers in the sample is increasing with 
its size even in the layer-by-layer mode. 

We also calculated a kinetic growth coefficient (or ‘mobility’) t? = 
lim,,,, G/pAp where G is the growth rate. It shows a transition in the vicin- 
ity of the equilibrium roughening temperature TR (figure 2) which is connected with 

t Notice, however, that Ihere is some controversy in lhe literature mnceming the value of li(T): a 
different result is given by Bogoliubov d d 1341. 
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Figure 4 (a) The dependence of the mean-square height differ” U, on the size N 
for mnstant temperature T = ZTR and increasing disequibilibrium. (b)  Ihe Same U: in 
figure 4(n), but for T = 0.7TR. 

the change of the form of the dependence of the growth rate on 0 and AIL, i.e. with 
the change of the mode of growth. These data were obtained from the extrapolation 
of G / p A p  for small @AIL to ALL = 0 for relatively small system size N = 3 2 ,  
and we expect that the transition will become sharper for a larger system. In ordcr 
to check this point, we performed the calculation for a smaller system (N = 16). 
Supposing I? to depend on size as K = K-m + K , / N ,  we can then obtain vdlues 
for IC,. The results of this crude estimate are also shown in figure 2. The behaviour 
of the ‘mobility’ again agrees with the results of Hwa el 01 1241. 

A special limit of our model, in which the rates of the processes are indepen- 
dent of the surroundings (this corresponds to the infinite temperature limit in our 
parametrization), was studied by Meakin et 01 [7] (only pure growth case, Ap  - cc in 

- 
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Flgure 5. The =me BS in figure 3, but for large disequilibrium 

our parametrization) and later by Liu and Plischke [36] (two cases: pure growth and 
equilibrium). They found power-law roughness for T, Ap -, CO, with the roughness 
exponent C = 0.365 + 0.005 [7], C = 0.375 [36]. So one can expect a transition 
from logarithmic to power-law roughness. 'lb check the possibility of a transition we 
performed calculations for different temperatures and disequilibria. The change of 
behaviour, however, is very gradual, so that it should be described as a crossover, 
rather than as a transition. Indeed, crossover behaviour of this kind was considered in 
the original work of Kardar el a1 [6] and found recently @ut in the time dependence) 
by Guo et af [21] and n n g  et a1 (371. 
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@"re 6. Grey-scale plats profile of the surface at saturation for N = 1 2 8 ,  T = 0.7TR 
and different disequiliblia: (0) Afi = 0; (b) A,G = 0.1; (e) Afi = 10. Darker hue 
indicates higher level. Different profiles mnlain different numbers of layers: (0) 3 layers; 
(b) and (c) 5 layers. 
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The existence of a kinetic roughening transition in d' = 2 for models belonging 
to the wz-class is somewhat controversial. Since dimension d' = 2 is the marginal 
dimension, no analytical prediction is known for this case. The results of some nu- 
merical simulations of discrete models [22, 19, 201 have been interprcted as evidencc 
of the transition. However, other papers [21, 24, 371 show that there is a crossover 
rather than a sharp transition; a direct numerical solution of the Kpz equation [38] 
does not indicate any transition either. 

We have obselved crossover behaviour in two cases: either with increasing dise- 
quilibrium for temperature above the roughening temperature T = 2TR (figure 4(a) )  
or with increasing temperature for sufficiently large disequilibrium (Aji = 10) (figure 
5). In the former case the crossover occurs for 1 < Aji < 8 and in the latter for 
a temperature around T = 1.5TR. A similar crossover with increasing temperature 
as in figure 5 is also seen for lower constant disequilibrium Aji = 5 (not shown). 
On the other hand for a temperature below TR (T = 0.7TR) we do not observe 
any crossover: the roughness remains logarithmic even for very large disequilibrium 
(figure 4(b)). 

For krge disequilibrium and at temperatures of the order of TR, the exponent 
extracted from our data is lower than that measured by Meakin er a1 [7] and by Liu 
and Plischke [%I. For example for T = ZT,, KG = 50 and N = 128 we gct 
C = 0.225. This value is close to a value C = 0.25 obtained by Amar and Family 
[I71 in the case of the restricted SOS model (for the low-temperature phase). 'RI allow 
a comparison with the results of Meakin et a/  and of Liu and Plischke we also ran 
our program for the case of probabilities independent of the surroundings (infinite 
temperature limit) and OAw = 25, i.e. the same PALL as in the case T = 2TR and 
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Figure 7. Same as figure 6, but for T = 1.5TR. Different profiles contain different 
numbers of layers: (0 )  6 layen; (b)  and (c) I layers. 
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i p  = 50.  An estimate of the roughness exponent in this case (again for N = 128) 
is C YN 0.35,  in approximate agreement with [7] and [36]. Thus C depends on T (see 
table 1). Tb save computer time the values of C in the table were actually obtained for 
a smaller size ( N  = 32). In fact C depends on N ;  this dependence, however, is very 
weak (C increases by about 3% when N increases from 32 to 128) and, moreover, is 
the same for both T = 2TR and T = CO. 

M Kotrla and A C Levi 

Table 1. lbmperature dependence of the mughness exponent for mnstant pap = 25.  

2 0.218fO.008 
3 0.265f0.013 
4 0.293f0.015 
5 0.30740.LW3 
6 0.310i0.NI 
7 0.31640.0M 
8 0.315f0.007 
9 0.322fO.W9 
10 0.323f0.011 
I 1  0.32lf0.004 
12 0.323f0.009 

so 0.335f0.008 
m 0.340f0.009 

0.333~.011 

Our data, in contrast with previous work based on a renormalization-group analy- 
sis of stochastic partial differential equations [24], do not indicate a simple correlation 
between the transition from the iayer-by-iayer to the continuous mode oi growth and 
the kinetic crossovers in roughness properties. In particular, for small Ab the rough- 
ness is logarithmic for both T < TR and T > TR whereas the modes of growth are 
different [25]. We cannot, however, completely rule out the possibility that such a 
correlation may appear in a system with a much larger size than our maximal size 

Figures 6 and 7 show profiles of the surface at saturation (steady growth) for 
different values of temperature and disequilibrium, illustrating different roughness 
properties and also different modes of growth. 

The main difference between the present work and previous studies, such as 
e.g. the extensive simulations by Amar and Family [17], is that here we pay special 
attention to the dependence of the surface roughness on A p .  The model considered 
hy Amar and Wm.i!y & wry simi!a_r to ours hut is studied Ln the ahsence of evaporation 
(Ap i CO). Under these conditions they find power-law roughness except in a narrow 
range around the equilibrium TR. Under the same conditions we also find pwer-  
law roughness at high T ,  hut not at low T (we ignore the reasons for this lattcr 
discrepancy). The important point, however, is that at finite AIL the power-law 
behaviour becomes logarithmic for large N ,  i.e. the (nonlinear) effects giving rise 
to the power-law behaviour are asymptotically irrelevant. This contrasts with the 
situation for infinite Ap, as well as with the growth properties of nonlinear stochastic 
differential equations such as the KPZ equation [6]. 

riming to the latter, we are at present studying how to model the present Monte 
Carlo simulation in terms of stochastic partial differential equations. A preliminary 

( N  = 128). 
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analysis seems to show that such differential equations do contain nonlinear terms, but 
are very different from the square gradient occurring in the KPZ equation. A square 
Laplacian would be a better (although imperfect) representation of the  nonlinearities 
inherent in the simulation. Not surprisingly, a square Laplacian is asymptotically 
irrelevant. We believe these to he the reasons for some discrepancies between our 
work and previous work based on stochastic differential equations, such as the studies 
by Guo el a1 [21, 221 and Hwa er a1 [24]. 

we have found two regions with different roughness properties (logarithmic roughness 
against power-law roughness). More simulation and theoretical work is certainly 
needed to understand the phase diagram and the nature of the change from one 
regime to the other, in particular to clarify whether some crossover scaling is fulfilled. 

..- ln summilrv qtudvino -.--, I.D the mnghness in sh-.i.nex =.ode! :&h C.!zcher Efie!ls, 
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