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Abstract. The surface roughness of a growing crystal is studied by Monte Carlo simulation
in a kinetic six-vertex model. Although for equilibrium the results are in good agreement
with the exact solution, even a small disequilibrium breaks down the roughening transi-
tion. For temperatures below the equilibrium roughening temperature Ty and arbitrary
large disequilibrium, as well as for temperatures above Tx but small disequilibrium the
surface is logarithmically rough, whereas, for lemperatures above Ty and sufficiently
large disequilibrium, the surface roughness increases as a power-law of size. A crossover
from logarithmic to power-law roughness occurs when the disequilibrium is increased at
a fixed temperature above Tq, or the temperature is increased for disequilibrium fixed
and sufficiently large.

The dynamics of a growing interface separating two phases has received considerable
attention in recent years. A number of growth and deposition models have been
proposed and studied (for reviews, see [1]). Much of this interest was motivated by
the fact that growth models, apart from their potentlal practical importance, exhibit
new features which are interesting from the pomt of view of non-equilibrium statistical
physics on a fundamental level.

The morphology of the surface can be characterized by roughness. A roughening
transition between different phases was originally discovered in connection with non-
equilibrium phenomena of crystal growth [2]; theoretically, it was then extensively
studied mainly in the case of equilibrium, which is now reasonably well understood
[3, 4]. However, its nature in systems which are far from equilibrium is still not
sufficiently explored.

An interesting feature of the growth models is non-trivial scaling behaviour. It has
emerged from the numerical simulations of simple discrete models of crystal growth
that the width of the surface w obeys a scaling law with increasing time ¢ or system
size N [5]

w(t, N) = NCf(1/N?) )

where f(z) — constant as z — co and f(z) — z¢/# as z — 0. Thus the steady-state
(t — oo) width diverges as N with a roughness exponent ¢ as the size N increases,
and the approach to the steady-state is characterized by a dynamical exponent z.
In the case of a self-affine structure on a d'-dimensional substrate described by
the height variable A, the width w is given by the mean-square height difference

t Present address: The Institute of Physics, Czechoslovak Academy of Sciences, Prague, Czechoslovakia.
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w? = (A — k’). Here () means the statistical average and A = T°; A,/ is the
spatial average; i labels substrate sites, and A= N 4" is the total number of sites.

This opens a way to the possibility of classifying the growth models, by analogy
with the critical phenomena, into universality classes. Most of the recent effort on
growth models have focused on finding the values of the exponents ¢ and z, often in
connection with the nonlinear Langevin equation proposed by Kardar et af [6] (KPZ).
These treatments have produced a number of interesting results [7-24], in particular
in terms of scaling laws [7, 8, 13-15] and of a possible kinetic roughening transition
[16-24]. Many questions, however, are still open. In particular the dimension d = 3
(d' = 2) appears to be critical for models from the Kpz class, so that it is not clear
what the roughening properties will be.

In a recent paper [25] we have introduced a kinetic six-vertex model (model II)
as a generalization of the exactly solvable six-vertex model of equilibrium statistical
mechanics {26] to a non-equilibrium situation}. van Beijeren’s mapping onto the
specially symmetric case of the six-vertex model, the so-called F model, allows an
exact description of the roughening transition for a surface in thermal equilibrium
[28]. Model II was introduced to extend a previously studied growth model (model
I [29]) to treat a much richer variety of processes. Both models I and IT bear some
similarity with, but neither is equivalent to, the hypercube stackjng model of Forrest
and Tang [18] over which the most accurate simulations in the literature have been
performed. Model II contains two parameters: temperature T and disequilibrium
(or driving force) Ay, which are used for a parametrization of probability rates for
condensation and evaporation of atoms

ePan . 1
PczeﬁAE+1 P =e,ﬁAE+1 {2)
where A F is a change of the energy of the configuration for a given process and
3 = 1/kgT is the inverse temperature. Model I appears to be richer in physical
content than both model I and the hypercube stacking model. It was found convenient
to introduce dimensionless variables 7'/Ty and Af = Ap/fky Ty, using the exactly
known roughening temperature Ty of the six-vertex model: kz Ty = €/In2 (where

e is vertex cu\.lsy;, for details see [2_;] Unlike Amar and Famuy' ll-”} who \.aupIG}'ed

a Metropolis-like approach we have used (2), which for Ap — 0 reduces to the
Glauber kinetics [30]. We have shown [25] that this model can describe different
regimes of crystal growth, ic. both layer-by-layer and continuous growth, and we
have calculated a qualitative curve separating these two modes.

Here we present the results of a further extensive numerical simulation in which
we have concentrated on the roughness of the growing surface in the kinetic six-vertex
model. We were intercsted in possible roughening transitions and their relation
10 different modes of growth. In this work we restrict ourscives to the roughness
exponent ¢ for which two different behaviours can already be seen for relatively
small systems. Measuring the dynamical exponent z is hampered by transient effects,
the scaling region is short and very large systems are required to obtain good results.

We used an algorithm employing real time averaging and a special procedure
(described elsewhere [25]) for treating the constraint on the height difference between

t A very different application of the six-vertex model to growth problems (in 1+1 dimensions) has been
presented very recently in an interesting paper by Gwa and Spohn [27], which exploits more fully the
propertics of the exact solution.
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Figure 1. The dependence of the mean-square height difference w on the size N in
equilibrium.

the nearest neighbours in the Bcsos model. Using this procedure we were able to
perform the calculations for different values of the temperature and chemical potential
up to the substrate size of 128 x 128. We calculated the mean-square height difference
for the sizes 8 x 8, 16 x 16, 32 x 32, 64 x 64 and 128 x 128, The number of Monte
Carlo steps increased with size and the majority of our calculations were done for
3 x 10° steps per site, which turned out to be sufficient for our averaging procedure.
Furthermore, the average over at least five independent runs was taken.

T
2=
A5 —
N i
ol 1 L ; e v
B - L s _
- .-‘!r”:/'l -
LY s
- Iy _
b~ [y N
05— £ —
- | _
o
o Lo =
‘.‘

- .
— ‘ / - |

0 el 1 1 { 1 | 1 1 1 |

1 1.5 2

T/Tg

Figure 2. Temperature dependence of coefficients K and K: full curve, exact solution
for K'(T); tdangles, K'(T) obtained by fitting numerical data; stars, kinelic ooefficient
K; drcles, extrapolated kinetic coefficient Koo,

At first we checked the equilibrium situation and compared our numerical results
with the exact solution [26] which is available in this case. The Monte Carlo method
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has been used for the study of the thermal roughening transition in the s0s model
[31] and also in the BCsos model {32] for the equilibrinm case. Qur results for the
BCsos model (figure 1) are very similar to those of [32]. For the thermal roughening

transition the relation
K{(T)In N T >1Ty

2 N ={
wi () constant il T < Ty 3

holds. The exact solution of the six-vertex model, in the case of the F-model for
T > Ty gives [33]
1

K= ra @

where A = 1 — 1e?P¢. The quantity K(T') obtained by a linear fitting from our data
is compared with the exact solution (4} in figure 2: the agreement is goodt.
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Figure 3. The same as in figure 1 but for very small disequilibrium.

After this check we investigated the influence of a very small disequilibrium on
the roughening transition (this problem was investigated theoretically some time ago
by Noziéres and Gallet {35] and very recently by Hwa er al [24]). There is no sign
of a transition in the behaviour of the mean-square height difference {figure 3). Our
data suggest that even for very small disequilibrium the surface is always rough with
roughness still logarithmically increasing with the system size, i.e. with the roughness
exponent { = 0. This agrees with the recent calculations of Hwa et al using the
renormalization group [24]. The roughness, even for temperatures below Ty, can be
understood because the number of incomplete layers in the sample is increasing with
its size even in the layer-by-layer mode. _

We also calculated a kinetic growth coefficient (or ‘mobility) K =
limy,_o G/BAu where G is the growth rate. It shows a transition in the vicin-
ity of the equilibrium roughening temperature Ty (figure 2) which is connected with

t Notice, however, that there is some controversy in the literature concering the value of A(T): a
different result is given by Bogolivbov e al [34].
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Figure 4 (2) The dependence of the mean-square height difference w on the size N
for constant temperature T = 27y and increasing disequibilibrium. () The same as in
figure 4(a), but for T = 0.7Tx.

the change of the form of the dependence of the growth rate on G and Ay, ic. with
the change of the mode of growth. These data were obtained from the extrapolation
of G/BAp for small BAu to Ap = O for relatively small system size N = 32,
and we expect that the transition will become sharper for a larger system. In order
to check this point, we performed the calculation for a smaller system (N = 16).
Supposing K to depend on size as K = K_ + K,/N, we can then obtain valucs
for f(oo. The results of this crude estimate are also shown in figure 2. The behaviour
of the ‘mobility’ again agrees with the results of Hwa et al [24].

A special limit of our model, in which the rates of the processes are indepen-
dent of the surroundings (this corresponds to the infinite temperature limit in our
parametrization), was studied by Meakin et al [7] (only pure growth case, Ay — oo in
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Figure 5. The same as in figure 3, but for large disequilibrium.

our parametrization) and later by Liu and Plischke [36] (two cases: pure growth and
equilibrium). They found power-law roughness for T, Ay — oo, with the roughness
exponent { = 0.365 + 0.005 [7], { = 0.375 [36}. So one can expect a transition
from logarithmic to power-law roughness. To check the possibility of a transition we
performed calculations for different temperatures and disequilibria. The change of
behaviour, however, is very gradual, so that it should be described as a crossover,
rather than as a transition. Indeed, crossover behaviour of this kind was considered in
the original work of Kardar ef al [6] and found recently (but in the time dependence)
by Guo ef af {21] and Tang et al [37].
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The existence of a kinetic roughening transition in d’ = 2 for models belonging
to the XPz-class is somewhat controversial. Since dimension d' = 2 is the marginal
dimension, no analytical prediction is known for this case. The results of some nu-
merical simulations of discrete models [22, 19, 20] have been interpreted as evidence
of the transition. However, other papers [21, 24, 37} show that there is a crossover
rather than a sharp transition; a direct numerical solution of the KPZ equation [38]
does not indicate any transition either.

We have observed crossover behaviour in two cases: either with increasing dise-
quilibrium for temperature above the roughening temperature T' = 2Ty (figure 4(a))
or with increasing temperature for sufficiently large disequilibrium (A g = 10) (figure
5). In the former case the crossover occurs for 1 < Af < 8 and in the latter for
a temperature around T = 1.57y. A similar crossover with increasing temperature
as in figure 5 is also seen for Jower constant disequilibrium Af = 5 (not shown).
On the other hand for a temperature below Ty (7' = 0.77y) we do not observe
any crossover: the roughness remains logarithmic even for very large disequilibrium
(figure 4(b)).

For large disequilibrium and at temperatures of the order of Ty, the exponent
extracted from our data is lower than that measured by Meakin ef a/ [7] and by Liu
and Plischke [36]. For example for T = 2T, Ap = 50 and N = 128 we get
¢ = 0.225. This value is close to a value { = 0.25 obtained by Amar and Family
[L7] in the case of the restricted sOS model (for the low-temperature phase). To allow
a comparison with the results of Meakin et a/ and of Liu and Plischke we also ran
our program for the case of probabilities independent of the surroundings (infinite
temperature limit) and A pu = 25, ie. the same SAypn as in the case T' = 27T, and
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Figure 7. Same as figure 6, but for T = 1.5Tk. Different profiles contain different
numbers of layers: (¢) 6 layers; (b) and (¢} 7 layers.
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Ayp = 50. An estimate of the roughness exponent in this case (again for N = 128)
is ( ~0.35, in approximate agreement with [7] and [36). Thus ¢ depends on T (see
table 1). To save computer time the values of ¢ in the table were actually obtained for
a smaller size (N = 32). In fact ¢ depends on N; this dependence, however, is very
weak (( increases by about 3% when NV increases from 32 to 128) and, moreover, is
the same for both 1" = 2T, and T = co.

Table 1. Temperature dependence of the roughness exponent for constant 3A u = 25.

T ¢

0.2180.008
0.26540.013
0.293240.015
0.307-£0.003
0.3100.00¢
0.31620.006
0.315+0.007
0.3224:0.009
10 0.32310.011
11 0.321+0.004
12 0.323£0.009
25 0.33340.011
50 0.335-£0.008
oo 0.3404£0.009

F=BE--REN B R A ]

Our data, in contrast with previous work based on a renormalization-group analy-
sis of stochastic partial differential equations [24], do not indicate a simple correlation
between the transition from the layer-by-layer to the continuous mode of growth and
the kinetic crossovers in roughness properties. In particular, for small Aj the rough-
ness is logarithmic for both T" < Ty and T > T whereas the modes of growth are
different [25]. We cannot, however, completely rule out the possibility that such a
correlation may appear in a system with a much larger size than our maximal size
(N = 128).

Figures 6 and 7 show profiles of the surface at saturation (stcady growth) for
different values of temperature and disequilibrium, illustrating different roughness
properties and also different modes of growth.

The main difference between the present work and previous studies, such as
¢.g. the extensive simulations by Amar and Family [17], is that here we pay special
attention to the dependence of the surface roughness on Au. The model considered
hy Amar and Family ig very similar to ours but is studied in the absence of evaporation
(A — oco). Under these conditions they find power-law roughness except in a narrow
range around the equilibrium 7. Under the same conditions we also find power-
law roughness at high 7, but not at low T (we ignore the reasons for this latter
discrepancy). The important point, however, is that at finite Ay the power-law
behaviour becomes logarithmic for large N, ie. the (nonlinear) effects giving rise
to the power-law behaviour are asymptotically irrelevant. This contrasts with the
situation for infinite A, as well as with the growth properties of nonlinear stochastic
differential equations such as the KPZ equation [6].

Turning to the latter, we are at present studying how to model the present Monte
Carlo simulation in terms of stochastic partial differential equations. A preliminary
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analysis seems to show that such differential equations do contain nonlinear terms, but
are very different from the square gradient occurring in the KPZ equation. A square
Laplacian would be a better (although imperfect) representation of the nonlinearities
inherent in the simulation. Not surprisingly, a square Laplacian is asymptotically
irrelevant. We believe these to be the reasons for some discrepancies between our
work and previous work based on stochastic differential equations, such as the studies
by Guo et al [21, 22] and Hwa er al [24).

In summary, qud\nnu the roughness in a six-vertex model with Glauber kinetics

st ELEt I PRI it SAAV Lislepaniids Lak & LATHR LN LS LT L] "u.u iauder kinet

we have found two reglons with dlﬁerent roughness properties (logarithmic roughness
against power-law roughness). More simulation and theoretical work is certainly
nceded to understand the phase diagram and the nature of the change from one
regime to the other, in particular to clarify whether some crossover scaling is fulfilled.

Acknowledgments

This work was supported in part by the SISSA-CINECA project. We would like to
thank Dr Pasquale Pavone for his help in generating the graphic program.

References

fitefot ot LAt on ]

(11 Hermann H J 1986 Phys. Rep. 136 153
Vicsek T 1989 Factals Growth Phenomena (Singapore: World Scientific)
Kotrla M 1992 Czech. J Phys. B to appear

[2] Burton W K, Cabrera N and Frank F C 1951 Phil Trans. K Sec. A 243 229

3] Weeks I D 1980 Ordering in Strongly Fluctuating Condensed Matter Systems ed T Riste (New York:

Pienum)
van Beijeren H and Nolden [ 1987 Structure and Dynamics of Surfaces H (Topics in Current Physics
43) ed W Schommers and P von Blanckenhagen (Berlin: Springer)

Nolden [ 1990 Thesis University of Utrecht

[4] Weeks J D and Gilmer G H 1979 Adv. Chemn. Phys. 40 157

[5] Family F and Vicsek T 1985 X Phys. A: Math. Gen. 18 L75

{6] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev Lew. 56 889

[7) Meakin F, Ramanlal P, Sander L M and Balt R C 1986 Phys. Rev. A 34 5091

81 Krg J 1987 Phys. Rev. A 36 5465

{91 Plischke M, Ricz Z and Liu D 1987 Phys. Rev. B 35 3483

{10] Kim J M and Kosterlitz J M 1989 Phys. Rev. Lert. 62 2289

[11] Woif D E and Kertész T 1987 Europhys. Lew. 4 651

[12] Chakrabarti A and Toral R 1989 Phys. Rev. B 40 11419

[13] Sun T Guo H and Grant M 1989 Phys. Rev A 40 6763

[14] Wolf D E and Villain J 1990 Europhys. Lext. 13 389

[15] Kertész T and Wolf D E 1989 Phys Rev. Leu. 62 2571

resy ot £ 1£4

{i6] Lehner C, Rajewsky N, Woif I E and Keitész J 1950 Prysica 1644 81
Krug J, Kertész J and Wolf D E 1990 Europhys. Len. 12 113
[17] Amar J G and Family F 1990 Phys. Rev Lett. 64 543; 1990 Phys. Rev Let. 64 2334
Krug T and Spohn H 1990 Phys. Rev Len. 64 2332
Kim J, Ala-Nissila T and Kosterlitz ] M 1990 Phys. Rev. Len. 64 2333
[18] Forrest B M and Tang L-H 1990 J. Srar. Phys. 60 181; 1990 Phys. Rev. Lew. 64 1405
[19] Pellegrini Y P and Jullicn R 1990 Phys. Rew Len. 64 1745
[20] Yan H, Kessler D and Sander L M 1990 Phys. Rev Let. 64 926
21] Guo H, Grossmann B and Grant M 1990 FPhys. Rev. A 41 7082
[22] Guo H, Grossmann B and Grant M 1990 Phys. Rev Len. 64 1262
[23] Medina E, Hwa T and Kardar M 1989 Phys. Rev. A 3% 3053
Halpin-Healy T 1989 Phys. Rew Leit. 62 442



3132 M Kotrla and A C Levi

[24] Hwa T, Kardar M and Paczuski M 1991 Phys. Rev Len. 66 441
Paczuski M 1991 Phys. Rev Let. 66 1545
[25] Kotrla M and Levi A C 1991 1 Siat. Phys. 64 579
[26] Lieb E H and Wu F Y 1972 Phase Transitions and Critical Phenomena vol |, ed C Domb and M §
Green (London: Academic)
Baxter R J 1982 Exactly Solvable Models i Sratistical Physics (London: Academic)
[27] Gwa L H and Spohn H Preprin:
[28] van Beijeren H 1977 Phys. Rev. Lett. 38 993
[29] Garrod C, Levi A C and Touzani M 1990 Selid State Commun. 75 315
[30] Glauber R J 1963 J Math. Phys. 4 294
{31] Swendsen R H 1977 Phys. Rev B 15 5421
[32] Shugard W J, Weeks J D and Gilmer G H 1978 Phys. Rev Len. 41 1399
[33] Youngblood R W, Axe ] D and McCoy B M 1980 Phys. Rev B 21 5212
[34] Bogoliubov N M, Izergin A G and Korepin V E 1986 Nucl Phys. B 275 687
[35] Nozieres P and Gallet F 1987 J. Physique 48 353
[36] Liu D and Plischke M 1988 Phys. Rev B 38 4781
1371 Tang L H, Nattermann T and Forrest B M 1990 Phys. Rev Len. 65 2422
[38] Amar J G and Family F 1990 Phys. Rev A 41 3399



